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Abstract

It is shown that the presence of multiple eigenvalue parameters may result in the
superintegrability of the restricted soliton flows. The restricted AKNS flow, the
Neumann system and the restricted mKdV flow with an eigenvalue parameter
whose multiplicity is greater than two are demonstrated to be superintegrable.

PACS numbers: 02.30.Ik, 02.30.Jr

1. Introduction

In recent years, there has been growing interest in the study of superintegrable Hamiltonian
systems. Recall that a classical Hamiltonian system on a 2N -dimensional phase space is said
to be superintegrable if it admits N + k, 1 � k � N − 1 functionally independent and globally
defined integrals of motion, N of them in involution pairwise. In particular, if the number of
integrals takes the value 2N − 1, then the system is called maximally superintegrable. The
well-known elementary examples are the isotropic harmonic oscillator, the Kepler system and
the Calogero–Moser system. A considerable effort has recently been devoted to a systematic
search for superintegrable systems as well as the analysis to the structures of superintegrabilities
of these models [1–5]. In particular, very recently Ballesteros and Herranz have proposed
an approach to construct integrals for superintegrable systems on N-dimensional space of
constant curvature which explains well the superintegrabilities of a class of superintegrable
systems [4]. Yet, the general mechanism of superintegrability has remained unclear.

The aim of the present work is to uncover a mechanism of superintegrability for a kind
of finite-dimensional integrable Hamiltonian systems called the restricted soliton flows. This
kind of integrable systems contains a large number of important physical systems such as
the Neumann system, the Garnier system, the Hénon–Heiles system and the geodesic flow
equation on the ellipsoid. They can be obtained from (1+1)-dimensional soliton equations
through nonlinearizations of spectral problems of soliton equations [6–9] and can be used to
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construct the exact solutions or the numeric solutions of the soliton equations [10–13]. In this
paper, we confine our attention to the restricted flows of the soliton equations which relate to
2×2 matrix spectral problems. Viewing from Lax matrices, these systems are the generalized
classic Gaudin model [14]

L(λ) = L0(λ) + �1, �1 =
N∑

j=1

1

λ − λj

(
qjpj −q2

j

p2
j −qjpj

)
,

or the generalized Gaudin magnet with boundary [15],

L(λ) = L0(λ) + �2, �2 =
N∑

j=1

1

λ2 − λ2
j

(
λqjpj −λjq

2
j

λjp
2
j −λqjpj

)
,

where L0(λ) is a traceless 2×2 matrix whose entries are polynomials of λ or λ−1. One feature
of them is that they depend on N parameters λ1, . . . , λN , called eigenvalue parameters. In what
follows, we take three examples to demonstrate that superintegrability will occur provided
that the degree of a multiple eigenvalue parameter is greater than two.

2. Some superintegrable Hamiltonian systems

Let us first consider the following restricted AKNS flow [7, 16]:{
qx = −�q + 〈q, q〉p,

px = −〈p, p〉q + �p,
(1)

where q = (q1, . . . , qN)T , p = (p1, . . . , pN)T ,� = diag(λ1, . . . , λN), λ1, . . . , λN are N
arbitrary eigenvalue parameters.

It is a Hamiltonian system over the standard symplectic space
(
R2N,

∑N
j=1 dpj ∧ dqj

)
qx = {q,H } ≡ ∂H

∂p
, px = {p,H } ≡ −∂H

∂q
, (2)

where

H = −〈�q, p〉 + 1
2 〈q, q〉〈p, p〉,

and allows the Lax representation

d

dx
L(λ) = [U(λ), L(λ)], (3)

where

L(λ) =
(−1 0

0 1

)
+

N∑
j=1

1

λ − λj

(−qjpj q2
j

−p2
j qjpj

)
(4)

and

U(λ) =
( −λ 〈q, q〉

−〈p, p〉 λ

)
.

It is easy to check that the Lax matrix (4) satisfies an r-matrix relation. Hence, det L(λ) is a
generating function of integral of motion. In particular, when all parameters λ1, . . . , λN are
distinct, we arrive at

det L(λ) = −1 −
N∑

j=1

Ij

λ − λj

,
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where

Ij = 2qjpj −
N∑

k=1,k �=j

B2
jk

λj − λk

, 1 � j � N (5)

and

Bjk = qjpk − qkpj , 1 � j, k � N.

I1, . . . , IN are N functionally independent and conversed integrals of motion to support the
complete integrability of the Hamiltonian system (2). The relation between Hamiltonian H
and λ1, . . . , λN is

H = −1

2

N∑
j=1

λj Ij +
1

8

⎛
⎝ N∑

j=1

Ij

⎞
⎠

2

.

Following [17] we now consider the case of multiple eigenvalue parameters. For the sake
of simplicity, we only discuss the case that λ1 = · · · = λr = α, λr+1, . . . , λN are different,
where r � 2. In this case, it can be checked that the Hamiltonian formula (2) and Lax
representation (3) hold true. But the integrals I1, . . . , Ir make no sense. However, we can
construct N + r − 2 functionally independent integrals of motion as follows. First of all, we
find that

K = I1 + · · · + Ir

= 2
r∑

j=1

qjpj −
N∑

k=r+1

1

α − λk

(
B2

1k + · · · + B2
rk

)
(6)

exists in spite of λ1 = · · · = λr = α. Moreover, K and Ir+1, . . . , IN are in involution mutually.
Second, we observe that

lim
λj →λk

[(λj − λk)(Ij − Ik)] = −2B2
jk.

With it we define two groups of functions

K(k) =
∑

1�i<j�k

B2
ij , 2 � k � r, (7)

K(k) =
∑

r−k+1�i<j�r

B2
ij , 2 � k � r. (8)

A straightforward verification shows that{
B2

jk, B
2
jn

} = 4BjkBjnBkn. (9)

Therefore we have{
B2

jk, Is

} = 1

α − λs

{
B2

jk, B
2
sj + B2

sk

} = 0, s � r + 1, j, k = 1, . . . , r

and

{K(j),K(l)} = 0, {K(j),K(l)} = 0, 2 � j, l � N.

As for the Poisson bracket {K(i),K
(j)}, we know that if 1 � i �

[
r
2

]
,
[

r
2

]
+ 1 � j � r,

then {K(i),K
(j)} = 0, and otherwise {K(i),K

(j)} does not vanish, by a direct calculation.

3
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Therefore, we arrive at two groups of independent integrals of motion in involution
{K,K(2), . . . , K(r), Ir+1, . . . , IN } and {K,K(2), . . . , K(r), Ir+1, . . . , IN }.

We remark that K(r) = K(r) and

H = −1

2

⎛
⎝αK + K(r) +

N∑
j=r+1

λj Ij

⎞
⎠ +

1

8

⎛
⎝K +

N∑
j=r+1

Ij

⎞
⎠

2

.

Consequently, if r = 2, due to K(2) = K(2), we only get N independent integrals of motion and
the system (2) is completely integrable. However, if r � 3 we have additional r − 2 integrals
of motion besides the independent integrals {K,K(2), . . . , K(r), Ir+1, . . . , IN }. Also we can
show that K,K(2), . . . , K(r), K

(2), . . . , K(r−1), Ir+1, . . . , IN are functionally independent by
direct calculations (a proof for 3 � r � 8 is given in the appendix). Therefore, in this case
the system (2) is not only completely integrable but also superintegrable.

Next we consider the cerebrated Neumann system [18]

qxx + (〈qx, qx〉 − 〈�q, q〉)q + �q = 0, 〈q, q〉 = 1,

or equivalently ⎧⎨
⎩

qx = p,

px = −�q − (〈p, p〉 − 〈�q, q〉)q,

〈q, q〉 = 1, 〈q, p〉 = 0,

(10)

which describes the motion of a particle constrained on the sphere SN−1 in N-dimensional
space submitted to harmonic forces. It is a restricted KdV flow [8] and admits the following
Lax representation:

d

dx
L(λ) = [U(λ), L(λ)] (11)

with

L(λ) =
(

0 0
1 0

)
+

N∑
j=1

1

λ − λj

(
qjpj −q2

j

p2
j −qjpj

)
(12)

and

U(λ) =
(

0 1
−λ − 〈p, p〉 + 〈�q, q〉 0

)
. (13)

This can be written as a Hamiltonian form

qx = {q,H }D, px = {p,H }D (14)

with

H = 1
2 (〈p, p〉 + 〈�q, q〉), (15)

where {·, ·}D is the Dirac bracket over the sphere bundle T SN−1

T SN−1 = {(q, p) ∈ R2N |�1 ≡ 〈q, q〉 − 1 = 0,�2 ≡ 〈q, p〉 = 0}, (16)

i.e.

{f, g}D = {f, g} + 1
2 {f,�1}{�2, g} − 1

2 {f,�2}{�1, g}.
It is well known that the Lax matrix L(λ) satisfies an r-matrix relation and thus detL(λ)

is a generating function of integrals of motion. Explicitly, if λ1, . . . , λN are distinct we get

det L(λ) =
N∑

j=1

Ij

λ − λj

,

4
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where

Ij = q2
j +

N∑
k=1,k �=j

B2
jk

λj − λk

, 1 � j � N.

In particular, H = 1
2

∑N
j=1 λj Ij . Therefore, the Neumann system (10) is completely integrable

when λ1, . . . , λN are distinct.
Again when λ1 = · · · = λr = α, λr+1, . . . , λN are different, we have

K =
r∑

j=1

q2
j +

N∑
k=r+1

1

α − λk

(
B2

1k + · · · + B2
rk

)
,

and K2, . . . , Kr defined as before.
{K,K(2), . . . , K(r), Ir+1, . . . , IN } and {K,K(2), . . . , K(r), Ir+1, . . . , IN } are two groups of

integrals of motion in involution pairwise. On the other hand, on T SN−1 we have

K +
N∑

j=r+1

Ij = 〈q, q〉 = 1

and

H = 1

2

⎛
⎝αK + K(r) +

N∑
j=r+1

λj Ij

⎞
⎠ .

Therefore, we only have N + r − 3 functionally independent integrals of motion
K,K(2), . . . , K(r), Ir+1, . . . , IN−1,K

(2), . . . , K(r−1). Hence, as r � 3 the Neumann system is
not only complete integrable but also superintegrable.

The third example is the restricted mKdV flow [19]{
qx = −〈q, p〉q + �p,

px = �q + 〈q, p〉p,
(17)

which is a Hamiltonian system

qk,x = ∂H

∂pk

, pk,x = −∂H

∂qk

, 1 � k � N,

where

H = − 1
2 (〈q, p〉2 − 〈�p,p〉 + 〈�q, q〉).

It allows the following Lax representation:
d

dx
L(λ) = [U(λ), L(λ)], (18)

with

L(λ) =
(

0 −1
−1 0

)
+

N∑
k=1

1

λ2 − λ2
k

(
λqkpk −λkq

2
k

λkp
2
k −λqkpk

)
(19)

and

U(λ) =
(−〈q, p〉 λ

λ 〈q, p〉
)

. (20)

det L(λ) is a generating function of integrals of motion. Explicitly, when λ1, . . . , λN are
distinct we arrive at

det L(λ) = −1 +
N∑

j=1

Ij

λ2 − λ2
j

,

5



J. Phys. A: Math. Theor. 42 (2009) 175401 R Zhou and X Hu

where

Ij = λjp
2
j − λjq

2
j − q2

j p
2
j +

1

2
λj

N∑
k=1,k �=j

(
B2

jk

λj − λk

− P 2
jk

λj + λk

)
,

where Pjk = qjpk + qkpj , 1 � j, k � N.

H = 1

2

N∑
j=1

Ij .

Again, when λ1 = · · · = λr = α, λr+1, . . . , λN are distinct, we have

K =
r∑

j=1

Ij

=
r∑

j=1

(
λjp

2
j − λjq

2
j − q2

j p
2
j

)
+

1

2

∑
1�i<j�r

(
B2

ij − P 2
ij

)
+

1

2

r∑
j=1

N∑
k=r+1

(
αB2

jk

α − λk

− αP 2
jk

α + λk

)

and

lim
λj →λk

[(λj − λk)(Ij − Ik)] = λkB
2
jk, H = 1

2

⎛
⎝K +

N∑
j=r+1

Ij

⎞
⎠ .

Integrals of motion K(k),K
(k) defined as before. Finally, K,K(2), . . . , K(r), Ir+1, . . . , IN ,

K(2), . . . , K(r−1) are functionally independent integrals of motion of the restricted mKdV
flow. When r � 3, the restricted mKdV flow is superintegrable.

3. Conclusion and discussion

It has been shown that the presence of multiple parameters may result in superintegrability of
the restricted soliton flows. We take the restricted AKNS flow, the Neumann system and the
restricted mKdV flow as illustrative examples. We remark if all eigenvalue parameters are
identical then we recover the result of [4].

We note that recently there has been some work done on the integrable systems with
multiple eigenvalue parameters [20, 21]. In particular, in [20] Vuk has observed that the
confluent Neumann system with r > 2 identical eigenvalue parameters is superintegrable
and showed by a counterexample that if only two of the eigenvalue parameters coincide the
confluent Neumann systems are not superintegrable. Therefore, maybe it is necessary for
the superintegrability of the restricted soliton flow that the eigenvalue parameter multiplicity
is greater than two.

Acknowledgment

This work has been supported by the National Natural Science Foundation of China (No.
10871165).

Appendix. On the functionally independence of first integrals

We first show the functionally independence of first integrals of the restricted AKNS flow (1)
with multiple eigenvalue parameters. More explicitly, we show that the matrix

J (r) = ∂(K,K(2), . . . , K(r), K
(r−1), . . . , K(2), Ir+1, . . . , IN)

∂(p1, . . . , pr−2, q1, . . . , qr , qr+1, . . . , qN)
(A.1)

6
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is nongenerate on the domain

M = {(q, p) ∈ R2N |p2j+1 = q2k = pl = 0, 1 � 2j + 1 � r − 2, 1 � 2k � r, r + 1 � l �N},
where Ij ,K,Kk and K(k) are defined by (5)–(8).

To this end, introduce notation

K̃ = K +
N∑

j=r+1

Ij = 2
N∑

k=1

qkpk,

K(k) = K(k) − K(k−1) =
k−1∑
j=1

B2
jk, k = 3, . . . , r,

f (m) = K(m) − K(m−1) =
r∑

j=m+1

B2
mj , m = 3, . . . , r − 1

and

K(2) = K(2) ≡ B2
12, f (2) = K(2) ≡

r∑
j=3

B2
2j .

By properties of determinant it is easy to see that

det(J (r)) = det(J̃ (r))

where

J̃ (r) = ∂(K̃,K(2), . . . , K(r), f (2), . . . , f (r − 1), Ir+1, . . . , IN)

∂(p1, . . . , pr−2, q1, . . . , qr , qr+1, . . . , qN)
.

Observe that

det(J̃ (r)) =

∣∣∣∣∣∣∣∣
K̃L K̃R

∂(K(2),...,K(r),f (2),...,f (r−1))

∂(p1,...,pr−2,q1,...,qr )
0

∂(Ir+1,...,IN )

∂(p1,...,pr−2,q1,...,qr )

∂(Ir+1,...,IN )

∂(qr+1,...,qN )

∣∣∣∣∣∣∣∣
,

where K̃L = 2(q1, . . . , qr−2, p1, . . . , pr) and K̃R = 2(pr+1, . . . , pN) are two row vectors.
Since

∂Ir+j

∂qr+k

= 2pr+j δjk − 2
( ∑r

l=1 Br+j,lpl

)
λr+j − α

δjk

−
N∑

k=1,k �=j

2

λr+j − λr+k

Br+j,r+kpr+k, 1 � j, k � N − r,

we have

∂(Ir+1, . . . , IN)

∂(qr+1, . . . , qN)

∣∣∣∣
pr+1=···=pN =0

= 2

⎛
⎝ r∑

j=1

p2
j

⎞
⎠ diag

(
qr+1

α − λr+1
, . . . ,

qN

α − λN

)

and thus

det(J̃ (r))|pr+1=···=pN =0

=

∣∣∣∣∣∣∣∣∣

K̃L 0
∂(K(2),K(3),...,K(r),f (2),...,f (r−1))

∂(p1,...,pr−2,q1,...,qr )
0

∂(Ir+1,...,IN )

∂(p1,...,pr−2,q1,...,qr )

∂(Ir+1,...,IN )

∂(qr+1,...,qN )

∣∣∣
pr+1=···=pN =0

∣∣∣∣∣∣∣∣∣
= 2N−r

r∑
j=1

p2
j

N∏
k=r+1

qk

α − λk

Dr

7
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where

Dr =
∣∣∣∣∣ K̃L

∂(K(2),K(3),...,K(r),f (2),...,f (r−1))

∂(p1,...,pr−2,q1,...,qr )

∣∣∣∣∣ =
∣∣∣ ∂(S,K(2),K(3),...,K(r),f (2),...,f (r−1))

∂(p1,...,pr−2,q1,...,qr )

∣∣∣
only depends on p1, . . . , pr , q1, . . . , qr and S = 2

∑r
j=1 qjpj .

Therefore the functionally independence of K,K2, . . . , Kr,K
(2), . . . , K(r−1), Ir+1, . . . , IN

is equivalent to Dr �= 0 over some domain. We can readily obtain that

D3(p1 = q2 = 0) = 16q2
1q2

3p3
2p3

(
p2

2 + p2
3

)
,

D4(p1 = q2 = q4 = 0) = 64q4
1q3

3p2
2p

2
3p

3
4

(
p2

2 + p2
3 + p2

4

)
.

For an explicit integer r (r � 3) we can work out Dr with the following Maple programme:

r :=;
with linalg

B := (i, j)− > q[i] ∗ p[j ] − q[j ] ∗ p[i];
K := (k)− > sum(B(j, k)2, j = 1, . . . , k − 1);
f := (m)− > sum(B(m, s)2, s = m + 1, . . . , r);
S := 2 ∗ sum(q[j ] ∗ p[j ], j = 1, . . . , r);
g:= proc (z) if mod(z, 2) = 0 then p[z] else 0 end if end proc

h:= proc (z) if mod(z, 2) = 1 then q[z] else 0 end if end proc

with(V ectorCalculus)

A, d := Jacobian([S, seq(K(e), e = 2..r), seq(f (e), e = 2..r − 1)], [seq(p[e], e = 1..r − 2),

seq(q[e], e = 1..r)] = [seq(g(z), z = 1..r − 2), seq(h(z), z = 1..r)], ′determinant ′);
simplify(d, size).

In particular, we have

D5(p1 = p3 = p2 = q4 = 0) = −256q2
1q2

3q4
5p4

2p
3
4p

3
5

(
q2

1 + q2
3

)(
p2

2 + p2
4 + p2

5

)
,

D6(p1 = p3 = q2 = q4 = q6 = 0)=−1024q2
1q2

3q5
5p4

2p
2
4p

4
5p

3
6

(
q2

1 + q2
3

)2(
p2

2 + p2
4 + p2

5 + p2
6

)
,

D7
(
p1 = p3 = p5 = q2 = q4 = q6 = 0

) = 4096q2
1q2

3q2
5q6

7p4
2p

2
4p

3
6p

5
7

(
q2

1 + q2
3

)
(
q2

1 + q2
3 + q2

5

)(
p2

2 + p2
4

)(
p2

2 + p2
4 + p2

6 + p2
7

)
,

D8(p1 = p3 = p5 = q2 = q4 = q6 = q8 = 0) = 16384q2
1q2

3q2
5q7

7p4
2p

2
4p

2
6p

6
7p

3
8

(
q2

1 + q2
3

)
(
q2

1 + q2
3 + q2

5

)2(
p2

2 + p2
4

)(
p2

2 + p2
4 + p2

6 + p2
7 + p2

8

)
.

These express that K,K2, . . . , Kr,K
(r−1), . . . , K(2), Ir+1, . . . , IN are functionally

independent when 3 � r � 8 over M.
The same technique can be used in the proofs of the functionally independence of first

integrals of the Neumann systems and the restricted mKdV flow with multiple eigenvalue
parameters.
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